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ABSTRACT 

Successful longwall mining requires a stable 
t a i l ga te  entry. Gate ent ry  performance i s  
influenced by a number o f  geotechnical and design 
factors, including: 

- P i l l a r  s ize and p i l l a r  loading; - Roof qual i ty ;  - Floor -qua1 i ty;  - Entry width; and, 
- A r t i f i c i a l  support (primary and secondary). 

This oaDer describes a comorehensive. oract ica l .  
design h&hodology, based on' s t a t i s t i c a l '  analysis. 
o f  a nationwide data base of longwall ground 
control  experience. 

Geotechnical surveys were conducted a t  44 U.S. 
l o n w a l l  mines. and underground observations of 
s i t 6  geology, entry condii ions, and support design 
were recorded a t  each mine. The observations were 
combined w i t h  discussions w i t h  mine personnel t o  
i d e n t i f y  69 longwall gate ent ry  designs as 
sat isfactory,  unsatisfactory, o r  border1 ine. Only 
conventional longwall designs, i n  which the p i l l a r s  
are expected t o  carry  the f u l l  abutment loads, were 
included i n  the data base. Designs which employed 
y i e l d  p l l l a r s  on ly  were excluded. 

The case h i s t o r i es  were characterized using f i v e  
descr ip t ive parameters. P i l l a r  design was 
described by the Analysis o f  Longwall P i l l a r  
S t a b i l i t y  Factor (ALPS SF). A major new 
cont r ibut ion i s  the Coal Mine Roof Rating (CMRR), a 
rock mass c l ass i f i ca t i on  system tha t  quant i f ies  the 
s t ruc tu ra l  conpetence o f  bol ted mine roof .  Other 
quant i ta t ive measures were developed f o r  primary 
support, secondary support, and ent ry  width. 

Mu l t i va r ia te  s t a t l s t i c a l  analyses indicated tha t  
i n  84% o f  the case h i s t o r i es  the t a i l g a t e  
perfornance could be cor rec t l y  predicted using j u s t  
ALPS and the CMRR. Most of the misc lass i f ied cases 
f e l l  w i t h i n  a very narrow borderl ine region. The 
analyses also confirmed t ha t  primary support and 
gate entry width are essent ial  elements i n  

successful gate ent ry  design. The r e l a t i v e  
inportance o f  the f l o o r  and o f  secondary support 
could not be determined from the data. 

Based on these resu l ts ,  a simple equation was 
developed t o  guide the design o f  longwall p i l l a r s  
and gate entr ies: 

ALPS SF, - 1.76 - 0.014 CMRR 
Yhere: ALPS SF, - ALPS SF suggested f o r  design. 

Guidelines f o r  ent ry  width and primary support 
density, as re la ted  t o  the CMRR, are also provided. 

INTRODUCTION 

During the past decade, longwall mining has 
b e c m  the predominant mining method a t  l a rge  
underground coal mines. Average face p roduc t i v i t y  
has nearly quadrupled, and now stands near 2,400 
clean tons per u n i t  sh i f t .  I n  1991, 76 longwall 
mines accounted f o r  nearly 40X o f  a l l  underground 
coal production i n  the U.S. (Combs, 1993; Merr i ts,  
1993; Energy In fo rna t ion  Administration, 1992). 

Ground cont ro l  has been an important element i n  
improved longwall performance. F i f teen  years ago 
there were no r e l i a b l e  guidel ines f o r  designing 
e i t he r  gate en t r ies  o r  chain p i l l a r s .  Ta i lgate 
f a i l u res  occurred frequent ly,  and the 1 i t e ra tu re  o f  
the t ime describes many instances when roo f  f a l l s ,  
f l o o r  heave, o r  p i l l a r  sloughage impeded face 
advance and ven t i l a t ion .  The safety impl icat ions 
o f  t a i l g a t e  blockages were fu r ther  under1 ined by 
the 1984 U i lbe rg  mine disaster,  and regulat ions 
introduced by the Mine Safety and Health 
Admini s t r a t i on  (MSHA) i n  1988 required t ha t  roo f  
cont ro l  plans address the issue o f  maintaining safe 
travelways on the t a i l g a t e  side o f  the longwall 
(U.S. CFR 30, 1988). 

Responding t o  the need f o r  be t te r  condit ions, 
ground cont ro l  researchers focussed i n i t i a l l y  on 
the design o f  longwall chain p l l l a r s .  Many mines 
had found by t r i a l -and-e r ro r  t ha t  t a i l g a t e  
condit ions could improve s i g n i f i c a n t l y  when p i l l a r  
sizes were increased. Data published by Mark 
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(1992) c o n f i m d  the correlation between p i l l a r  
design and ta i lgate stabi l  l t y .  O f  46 case 
histories o f  unsatisfactory ta i lgate designs, only 
one occurred when the ALPS SF was greater than 1.3. 

While the various p i l l a r  design formulations 
proposed during the 1980's b u i l t  upon t h i s  
correlation, i t  was also evident that p i l l a r  design 
i s  not the PalY factor affecting ta i lgate 
stabi l i ty .  Indeed, experience and comon sense 
strongly suggested that roof qual i ty and entry 
support play a signif icant role. As Carr and 
Wilson (1982) noted, studies conducted as early as 
the 1960's had concluded that "whether or not the 
stress [from an extracted longwall panel] w i l l  
influence a roadway depends nore on the strength o f  
the rocks which surround the roadway i t s e l f  than on 
the width o f  the intervening p i l l a r . "  

Yet researchers were unable t o  successfully move 
beyond p i l l a r  design. I n  part, the i r  narrow focus 
nay have been due t o  the force o f  tradit ion. 
Before longwall mining, the greatest danger for 
p i l l a rs  was the regional fa i lu re  o f  many p i l l a r s  at 
once. The classic approach o f  determining "safety 
factors" from estimates o f  p i l l a r  strength and load 
worked well i n  predicting such squeezes or 
collapses. It was natural, though not necessarily 
appropriate, t o  transfer the same methodology t o  
longwalls. 

Another reason fo r  the focus on p i l l a r s  was that 
tradit ional, deterministic rock mechanics, 
involving analytical or numerical models, i s  not 
yet well suited t o  the complex problem of gate 
entry s tab i l i t y .  The mechanisms o f  gob formation, 
abutment load transfer, p i1 l a r  yielding, and roof 
behavior are largely unknown, making model 
formulation d i f f i c u l t .  Also central t o  the problem 
i s  the innenre variety o f  geologic sequences and 
features that col lect ively determine the structural 
in tegr i ty  o f  coal mine roof. Even the most 
sophisticated numerical models stra in creduli ty 
when c r i t i c a l  material properties and structural 
features must be guessed or ignored. 

Fortunately, deterministic methods are not the 
only ones available fo r  the solution o f  complex 
ground control problems. The method o f  & 

rel ies  instead on the scient i f ic  
interpretstion o f  actual mining experience. More 
than 100 longwall panels are mined i n  the U.S. each 
year, and each one i s  a ful l-scale test  o f  a 
l onwa l l  aate entry desian. Back calculation 
buiids upon th i s  wealth o f  experience, focussing 
d i rec t ly  on the variable o f  interest--tai lgate 
performance. 

Back-calculation i s  similar t o  the 
empirical/statistical approach that i s  widely used 
i n  other f ields, such as medicine, where the 
sc ient i f i c  understanding of the physical problem i s  
incomplete, but a large quantity o f  data i s  
available. Because the solutions are so f i rmly 
linked t o  rea l i ty ,  they are part icular ly  well- 
suited fo r  solving practical problems. Perhaps the 
best example o f  the method o f  back-calculation i n  
ground control i s  the Salamon and Munro p i l l a r  
strength formula, which has been so convincing i t  

has been used t o  size more than one n i l l i o n  South 
African p i l l a r s  (Salamon and Wagner, 1985). 

Effective back-calculation requires, as Salmon 
(1989) points out, 'a reasonably clear 
understanding o f  the physical phenomenon i n  
question." Without prudent s l lp l i f i ca t ion ,  the 
complexity o f  the problm w i l l  ovenhelm the 
nethod's a b i l i t y  t o  discern relationships between 
the m s t  important variables. But a key advantage 
o f  the approach i s  that c r i t i c a l  variables be 
included even i f  they are d i f f i c u l t  t o  measure 
directly. Usually a 'rating scale' I s  developed as 
a meaningful, repeatable measure o f  semi- 
quantitative data. 

I n  the longwall ta i lga te  design problem, the 
s iap l i f ied  conceptual mdel  assumed that ta i lgate 
performance was determined by s ix factors: 

- P i l l a r  design and loading; - Roof quality; - Floor qua1 i t y ;  - Entry width; - P r i u r y  support; and, - Supplmental support. 

The sections that follow describe how the data 
was collected and how the necessary rat ing scales 
were derived. 

DATA COLLECTION 

Data fo r  the study were collected during a series 
of mine v i s i t s  conducted between October 1988 and 
June 1992. A to ta l  o f  44 mines were included, 
representing approximately 55% o f  a l l  U.S. longwall 
mines i n  operation during the time period. The 
mines were selected t o  represent a geographic and 
geologic cross-section o f  the U.S. longwall 
experience. Every state with an operating 
longwall, with the exception o f  Ohio, was included 
(f igure 1). 

A t  each mine, information was collected through 
underground geotechnical surveys and discussions 
with nine personnel. The underground surveys 
documented geology, support, and gate entry 
conditions. Standardized data sheets were used t o  
record rock mass properties observed i n  underground 
exposures, usually roof fa1 1 s and/or overcasts. 
Other data sheets were used a t  coalbed and f loor  
exposures, and a t  the headgate and ta i lgate corners 
o f  the longwall. 

The discussions with mine personnel focussed on 
past experience with gate entry ground control. 
Panels i n  which conditions had been satisfactorv . . .... 
were identified, as were locations where conditions 
were unsatisfactory. Where conditions were 
considered unsatisfactory, the steps taken by 
management t o  prevent reoccurrence were documnted. 

DESCRIPTION OF THE DATA BASE 

A to ta l  o f  69 individual longwall case histories 
were d i s t i l l e d  from the data. The data base was 
l imi ted t o  conventional designs, where the p i l l a r s  
were sized t o  carry the f u l l  abutment loads 
(Mark, 1990). Total yielding p i l l a r  designs were 
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Cots histories 

Figure 1-Location of the geotechnical surveys. 

excluded. Each complete case h i s t o r y  was defined 
by approximately 50 ind iv idua l  data f i e lds ,  which 
were i n  t u r n  used t o  def ine 7 sumary var iables.  
The f i r s t  o f  these var iab les  i s  Design Performance, 
which i s  the moutcoma,' o r  "dependent" va r iab le  i n  
the analysis. The o ther  6 are 'explanatory," o r  
'dependent" var iables.  

Design Performance 

The case h i s t o r i e s  were each c l a s s i f i e d  as 
"sat is fac tory '  (30 cases), "unsat isfactory" (32 
cases), o r  "border l ine" (7 cases). Unsat isfactory 
condi t i o n s  almost always included r o o f  
de te r io ra t i on  and f a l l s ,  though f l o o r  heave and 
p i l l a r  sloughage were o f ten  c i t e d  as wel l .  To be 
c lass i f i ed  as unsat isfactory,  a case had t o  meet 
one o f  fou r  c r i t e r i a :  

- Good condi t ions,  w i t h  minimal delays 
a t t r i b u t a b l e  t o  ground cont ro l ,  were reported. 

I n  some instances, a s ing le  s a t i s f a c t o r y  case 
represents as many as 50 ext rac ted panels. Where 
the depth o f  cover varied, the deepest cover was 
used t o  character ize  the  s a t i s f a c t o r y  case. 
Because previous studies had ind icated t h a t  
f a i l u r e s  were very r a r e  when the ALPS SF exceeded 
1.3, no cases were included where the  ALPS SF 
exceeded 2.0. 

Border l ine cases were def ined as those i n  which 
condi t ions were considered l e s s  than sat is fac tory ,  
but  which d i d  not  meet any o f  the  fou r  c r i t e r i a  for  
unsat is fac tory  designs. Figure 2 shows the  
reg iona l  d i s t r i b u t i o n  o f  the  s a t i s f a c t o r y  and 
unsat is fac tory  designs. 

- Management changed the p i l l a r  design o r  the P i l l a r  Design 
en t ry  support i n  response t o  the poor t a i l g a t e  
condi t ions (25 cases) ; P i l l a r  design was character ized using the ALPS 

- The panel was abandoned due t o  poor condi t ions SF. The ALPS SF i s  def ined as: 

(2 cases); - Unacceptable condi t ions developed i n  the areas Estimated load-bearing capaci ty o f  

o f  deepest cover (2 cases), or ;  ALPS SF - p i l l a r  svstem 
- Several f a l l s  above the  b o l t  anchorage Estimated load  app l ied t o  p i l l a r s  a t  

occurred i n  the t a i l g a t e ,  r e s u l t i n g  i n  t a i l g a t e  corner 
t a i l g a t e  blockages and s i g n i f i c a n t  longwal l  
delays (3 cases). The estimated load-bearing capaci ty i s  determined 

by the width-to-height ra t i os ,  and the  t o t a l  load- 

Sat is fac tory  cases, i n  contrast ,  were those i n  bearing area, of t he  p i l l a r s  comprising t h e  p i l l a r  

which: system. The estimated load i s  determined by the 
depth o f  cover, the panel width, and the ex t rac t i on  

- The design was used f o r  a t  l e a s t  three r a t i o  w i t h i n  the  gate en t ry  system. De ta i l s  on 

successive panels; ca l cu la t i on  o f  the  ALPS SF have been published 
- Ta i lgate  blockages were very r a r e  o r  elsewhere (Mark, 1990; Mark, 1992). The 

nonexistent; a, d i s t r i b u t i o n  o f  the  ALPS SF w i t h i n  the  data base i s  
shown i n  f i g u r e  3. 
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Figure 2-Case loca t ion  d i s t r i bu t i on .  

Figure 3-Alps SF d i s t r i bu t i on .  

It may be noted tha t  whi 1 e data was c o l l  ected a t  
each s i t e  on the cleat,  bedding, and other 
s t ructura l  character is t ics  o f  the coal seams, no 
attempt was made t o  determine the i n  s i t u  coal 
strength. As discussed elsewhere (Mark, 1992), 
there i s  l i t t l e  evidence t ha t  coal strength 
s i gn i f i can t l y  a f f ec t s  t a i l g a t e  ent ry  performance. 

Roof Qua1 i t y  

One of the keys t o  the success o f  t h i s  research 
was the development o f  the CMRR as a quant i ta t ive 
measure of the s t ruc tu ra l  competence o f  coal mine 
roof. The CMRR weighs the importance o f  the 
geotechnical factors t ha t  determine r oo f  
conpetence, and combines these values i n t o  a s ing le  
r a t i n g  on a scale from 0 t o  100. Three s i gn i f i can t  
contr ibut ions o f  the CMRR are t ha t  it: 

- Focusses on the character is t ics  of bedding 
planes, sl ickensides, and other 
d iscon t inu i t i es  tha t  determine the s t ruc tu ra l  
competence o f  sedimentary coal measure rocks; - I s  appl icable t o  a l l  U.S. coalf ie lds, and 
allows a meaningful comparison o f  s t ruc tu ra l  
competence even where 1 i tho log ies are qu i te  
d i f fe ren t ;  and, 

- Treats the bo l ted i n t e r va l  as a s ing le  
structure, whi le considering the cont r ibut ions 
o f  the d i f f e r e n t  l i t h o l o g i c  un i t s  which my be 
present w i t h i n  it. 

The f i e l d  data necessary f o r  ca lcu la t ion o f  the 
CMRR are t y p i c a l l y  obtained from underground 
exposures o f  the roof s t r a t a  i n  roof f a l l s  o r  
overcasts. The fo l lowing features o f  the roo f  rock 
are observed: 

- Shear strength o f  d i scon t inu i t i es  (roughness 
and cohesion) ; - i n t ens i t y  o f  d i scon t inu i t i es  (spacing and 
oersistencel: - i t r eng th  an i 'weatherabi l i ty  o f  the rock; - presence o f  a strong bed w i t h i n  the bol ted 
i n t e r va l  ; - number o f  beds w i t h i n  the bo l ted in terva l ;  

- the qua l i t y  of the rock overly ing the bol ted ~. 
inte rva l ;  and, 

- the quant i ty  o f  ground water inf low. 

Fu l l  de ta i l s  on the co l l e c t i on  o f  f i e l d  data and 
the determination of the CMRR are presented i n  
another paper i n  these Proceedings ( b l i n d a  and 
Mark, 1993). 

The C l W I  o f  the roofs  observed a t  the longwalls 
var ied from a low of 30 t o  a high o f  85. Within 
t h i s  range three broad classes o f  roo f  energed as 
fol lows: 

Weak Roof ICMRR<451: Roof t y p i c a l l y  consist ing 
e n t i r e l y  o f  low strength (t8,OOO psi), c lose ly  
bedded, jo inted, and/or s l  ickensided rocks, 
usual ly  shales and coals. 

Roof [45tCMRRt6U: Bolted i n t e r va l  
usual ly  contains a t  l eas t  one competent un i t ,  
t y p i c a l l y  a s i l t s t one  o r  strong shale, t ha t  i s  a t  
l eas t  2 ft t h i c k  and contains iew beddino olanes - .  
o r  other d iscont inu i t ies .  

Strona Roof ICMRR>652: Bolted in te rva l  t y p i c a l l y  
contains a t  l eas t  one very competent, massive 
bed, a t  l eas t  3 ft t h i c k  t ha t  exceeds 8.000 ps i  
i n  strength, usual ly  a sandstone o r  a limestone. 

Figure 4 shows the geographic d i s t r i bu t i on  of the 
CMRR i n  the data base. It can be seen t ha t  mtnes 
i n  the northern Aooalachians (Pennsvlvania. 
Maryland, and northern West ~ i r g i n i i )  were' 
characterized p r ima r i l y  by Weak Roof. Mines i n  
I l l i n o i s  and Alabama had matnlv Moderate Roof. and 
i n  Utah the r oo f  was usual ly  i n  the Strong 

. 

category. I n  the other two regions, the southern 
Appalachians (V i rg in ia ,  eastern Kentucky, and 
southern West V i rg in ia )  and i n  Wyoming/Colorado/New 
k x i c o ,  the roofs  were d is t r ibu ted  among a l l  three 
classes. 

Entry Width 

No r a t i n g  system needed t o  be developed t o  
characterize ent ry  width. For consistency, the 
ent ry  width used i n  the analysis i s  as-mined, 
without considering the e f f ec t s  o f  r i b  sloughage. 
The range of en t ry  widths w i t h i n  the data base i s  
shown i n  f i gu re  5. 
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Figure K M R R  d i s t r i bu t i on .  

Figure 5-Tailgate ent ry  width d is t r ibu t ion .  

Primary Support 

A wide var ie ty  o f  primary ( roof  bo l t )  support 
f ix tures and patterns were used i n  the longwall 
mines studied. Data co l lec ted underground included 
the type o f  bo l t ,  b o l t  length and diameter, bo l t i ng  
pattern, p l a t e  type and dimensions, and addit ional 
support (mats, headers, mesh, etc.). The Primary 
Support Rating (PSUP) used i n  the analysis was 
developed as a rough measure o f  roof b o l t  density: 

PSUP - Lb ' Nb * Db 
Sb * We 

Nb - Number o f  bo l t s  per row 
Db - Dialmeter o f  the bo l t s  (inches) 
Sb - Spacing between rows o f  bo l t s  ( f t )  
We - Entry width ( f t )  

It should be noted t ha t  PSUP t r ea t s  a11 bo l t s  
equally, wi thout attempting t o  pass judgement on 
the re1 a t i ve  reinforcement value o f  d i f fe ren t  types 
o f  f i x tu res .  Figure 6 shows the d i s t r i bu t i on  o f  
PSUP i n  the data base, and tab le  1 provides 
examples o f  PSUP and i t s  calculat ion. 

Flgure &Primary support d l s t r i bu t i on .  

Table 1. Typical primary support systems and values 
o f  PSUP 

Secondary Support 

By far,  the nmst colnnon type of secondary support 
used i n  the ta i lga tes  was wood cr ibbing. Concrete 
f i be rc re te  c r i bs  were used i n  j u s t  one case, and i n  
three cases no secondary supports were ins ta l led .  
The secondary support ra t ing,  SSUP, i s  a rough 
measure of the volume o f  wood i ns ta l l ed  per u n i t  
length of the ta i lga te :  

SSUP - Nc * LC Wc 
Sc 

Where: Nc - Number o f  rows o f  c r i bs  i ns ta l l ed  
LC - Length o f  the c r i b  blocks ( f t )  
Wc - Width o f  the c r i b  block (as 

ins ta l led ,  f t )  
Sc - Center-to-center between c r i bs  i n  

each row ( f t )  

Figure 7 shows the d i s t r i b u t i o n  o f  SSUP, and 
tab le  2 provides sample values. 

Where: Lb - Length of the b o l t  ( f t )  
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adequately met these two cr i te r ia .  Logist ic 
regression calculates the probabil i t y  o f  a case 
balonging t o  a part icular  population, and does not 
require the assuption o f  mult ivariate n o r u l i t y  
f o r  the predictor variables. I n  the l o r p l l  
analyses, the resul ts from l o g i s t i c  regression were 
nearly identical t o  those obtained from the 
discriminant procedure, so only the discriminant 
resul ts w i l l  be discussed here. The s ta t i s t i ca l  
package SPSS was used i n  a11 coqutations. 

The f i r s t  step was t o  determine which variables 
were s igni f icant  predictors of ta i lga te  entry 
performance. Using a significance level  o f  
.alphag-0.05, only two variables. ALPS SF and URR. 

U U U U Y 
were included i n  the dl. The discriminant 

-mumrum equation was calculated as: - @a- Z - 4.10 (ALPS SF) + 0.057 (QIRR) - 6.83 
Were Z -Discriminant. 

(3) 

Figure 7-Secondary support distr ibution. 

Table 2. Typical secondary support system and 
values o f  SSUP 

Fl wr Qua1 i t y  

Characterizing the f lwr presented special 
d i f f i cu l t ies .  W i l e  a t tmpts  were u d e  t o  col lect  
data on the l i thology and structure o f  the mine 
floors, good underground exposures were often 
unavailable. The f loor  has received re la t ive ly  
l i t t l e  research attention, so not a11 o f  the 
i-rtant i n f o r u t i o n  my have been collected. I n  
the end. i t  was not possible t o  construct a 
r a n i n g f u l  f loor  ra t ing  systm fm the data 
available. and the flwr could not be included i n  
the analyses. 

WLTIVARIATE STATISTICAL ANALYSIS 

The goals o f  the s ta t is t ica l  analysis were to: 

- Determine which parameters are 
s igni f icant ly  related t o  ta i lgate entry 
perforuance; - Classify each case history as a success 
o r  fa i l u re  using a predictive mdel  (or 
classif4cation rule) based on those 
parameters; and, - Develop an equation that can be used i n  
design. 

Two s ta t is t ica l  techniques, discriminant analysis 
and l og i s t i c  regression, were erployed. 
Discriminant analykis i s  a regression method which 
classifies 0 b ~ e ~ l t i o n S  in to  tw populations. It 
assues that  the predictor variables have a 
u l t i v a r i a t e  n o ~ l  distr ibution, and that  the 
covariance matrix i s  the s u e  i n  both populations 
( A f i f i  and Clark. 1984). The longwall data set 

Uhen the discriminant IZ1 value o f  a case i s  
greater than zero, t a i l g i t &  conditions a k  
predicted t o  be satisfactory, l l k i l e  unsattsfactory 
conditions are predicted d e n  Z i s  less than zero. 

Equation (3) can be rearranged t o  re la te  ALPS SF t o  
UIIR: 

ALPS SF - 1.67 -0.O14URR 

The model represented by equations (3) and (4) 
successfully ident i f ied  a11 kt .10 cases, f o r  an 
overall success rq te  of 84%. The 
mistlassiFications uere evenly s ~ l i t  between 
satisfactory and unsatisfacto~y designs. Figure 8 
show the c p q l e t e  data base. with equation (4) 
represented as the discriminant equation. 

W i l e  equation 4 couyd be used d i rec t ly  i o  
design, a mre conservative equation that  reduced 
the misclassification ra te  for unsatisfactory 
designs might be mre appropriate. Moreover. it i s  
evident from f igure 8 that  m s t  o f  the 
misclassifications f a l l  very near the discriminant 
equation. By designating a borderline region i n  
which the outcpw i s  uncertain, the to ta l  n u k r  of 
misclassifications i s  reduced t o  4, f o r  an overall 
misclassi f~cat ion ra te  of 7%. The upper bound o f  
the bowkr l ine region i s  s h m  on figure 8 as.tW 
Design Equation: 

ALPS SFp 1.76 -0.014 ClRR (5) 

Were ALPS SF, i s  the ALPS SF suggested fo r  design. 

The lauer bound o f  the borderline region i s  
defined by equation (6): 

ALPS SF - 1.58 -0.014 URR (6) 

Table 3 shws the perforunce o f  t h i s  -1 with 
the longwall data base. 

The four r u a i n i n a  misclassifications can mrhaos 
be explained by exceptional conditions. T'hc'two - 
unsatisfactory cases rh ich  f e l l  wi th in the region 
o f  predicted satisfactory & r i m s  mere also the 
only unsatisfactory cases i n  which rn secondary 
support was ins ta l led  i n  the tailgate. Conversely. 
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Figure &Scatter p lo t  o f  case histories. 

the two misclassified satisfactory cases used 
s ign i f i cmt l y  more than the average amount of 
ar f  i f i c i a l  simpport. 

Table 3. Perfomnce o f  the longwall design model 

War Nuber Misclrssi- 
o f  o f  f i ca t ion 

Bpptpa S t l e c a r s e r - R l t e  
Satisfactory 25 2 7% 
Border1 ine 3 3 - 
Unsatisfactory 2 27 7% 

l k r r o u s  other s ta t is t ica l  analyses were 
performd on the colplete data set on subsets. The 
most significant, and i n i t i a l l y  surprislng, resul t  
was that  including additional variables i n  the 
mdel  d id not i g r o v e  the predictive capacity. The 
explanation i s  that  primary support and entry width 
are correlated with the CMRR and the ALPS SF a t  a 
s ta t i s t i ca l l y  signif icant level of 'alpham-0.05. 
Figure 9 shows the correlation between entry width 
and tha CWIR. O f  the 15 mines with weak roof  
(CWIR<45), a11 but one q l o y e d  entries no more 
than 18 ft wide. Conversely. o f  21 mines with 
aRR>50. 20 used entry widths that  were 18 ft or 
rider. It seems that mine operators have 
'naturallym adapted t o  weaker roof  by using narrow 
entries. A similar, though less pronounced, 
co rn la t i on  between primary support and the CltRR i s  
evident i n  figure 10. 

Figures 9 and 10 make clear that entry width and 
primary support p ~ p  very i lportant  t o  gate entry 
stabi l i ty .  Including them i n  the mdel  developed 
from t h i s  data set does not add predictive power, 
however, kcause the i r  effects are already 
ind i rec t ly  included i n  the UlRR tern. An important 

KEY 
Dsalgn Equatlon 
DI8crImbunt Eqa8Uon 
Lower Bound of Bordorllno 

Figure H n t r y  width vs UIRR. 

corollary i s  that  the two-parueter design equation 
(equation (5)) assumes that  the same entry 
width/primary support/CMRR corral ations w i l l  hold 
i n  the future. A mine with weak roof that employed 
a 20 ft wide ta i lgate might encounter d i f f i cu l t ies ,  
even i f  the ALPS SF satisfied equation (5). To 
help evaluate the ro le  of entry width and p r i u r y  
support exp l ic i t l y ,  a four-paramter node1 was 
detenined frm discriminant analysis: 

ALPS SF,,-1.63-0.018 CMRR + 0.024 Ue - 0.72 PSUP (7) 

The lower bound of the borderline region fo r  the 
4-para~eter model i s :  

ALPS SF-1.47-0.018 CMRR + 0.024 Ye - 0.72 PSUP (8) 

The misclassification rate o f  t h i s  model, 7%, i s  
equivalent t o  that  o f  the two-parameter mdel. 



12th CONFERENCE ON GROUND CONTROL IN MINING 
lbne of the predictive nodels presented thus f a r  based on the sc ient i f i c  interpretat ion o f  tha 

have included supplemental support. The reason i s  ground control experience obtained a t  more than 
that the unsatisfactory case histories i n  the data ha l f  o f  a l l  U.S. longwalls. The r t h o d  thus u k e s  
base tended t o  use m r e  supplemental support than the wealth of U.S. longwall experience available i n  
d id  the satisfactory cases (see f igure 7). The a practical fom. 

The pa r also i l l us t ra tes  the power o f  the 
empir icar  back-calculation approach i n  deriving 
practical solutions t o  cap lex  ground control 
problems. The CWlR u k e s  a c r i t i c a l  contribution 
by providing a meaningful , ant i tat ive measure o f  

atrang nmt the structural c q e t m c e  o 5" bolted mine roof. 
Both back-calculation and the CllRR can be expected r t o  figure pnninent ly i n  future U.S. Bumau o f  
Mims ground control research. 
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