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ABSTRACT

Many problems in rock mechanics are limited by our imperfect 
knowledge of the material properties and failure mechanics of 
rock masses.  Mining problems are somewhat unique, however, 
in that plenty of real world experience is generally available and 
can be turned into valuable experimental data.  Every pillar that is 
developed, or stope that is mined, represents a full-scale test of a 
rock mechanics design.  By harvesting these data, and then using 
the appropriate statistical techniques to interpret them, mining 
engineers have developed powerful design techniques that are 
widely used around the world.  Successful empirical methods are 
readily accepted because they are simple, transparent, practical, and 
firmly tethered to reality.

The author has been intimately associated with empirical design 
for his entire career.  But where his past papers have described the 
application of individual techniques to specific problems, the focus 
of this paper is the process used to develop a successful empirical 
method.  A six-stage process is described:

1. Identification of the problem, and of the end users of the 
final product

2. Development of a conceptual rock mechanics model, and 
identification of the key parameters in that model

3. Identification of measures for each of the key parameters, 
and the development of new measures (such as rating scales) 
where necessary

4. Data sources and data collection
5. Statistical analysis
6. Packaging of the final product

Each of these stages has its own potential rewards and pitfalls, 
which will be illustrated by incidents from the author’s own 
experience.  The ultimate goal of this paper is to provide a new 
and deeper appreciation for empirical techniques, as well as some 
guidelines and opportunities for future developers.

INTRODUCTION

Design is the central engineering activity.  It is a process which 
combines knowledge and judgement to obtain a desired outcome.  

Models are a crucial element in the design process, even though all 
models are limited in their ability to represent real systems.

In their seminal 1988 paper, Starfield and Cundall introduced 
a classification of modeling problems (Figure 1).   The X-axis 
measures the level of understanding of the fundamental mechanics 
of the problem to be solved.  The Y-axis refers to the quality and/
or quantity of the available data, including material properties, 
boundary conditions, and past experience.  In many branches of 
mechanics, most problems fall into region III, where there is both 
good understanding and reliable data.  This is the region where 
numerical models can be built, validated, and used with conviction.

Figure 1. Classification of modeling problems (after Starfield 
and Cundall, 1988).

Starfield and Cundall argued that problems in rock mechanics 
usually fall into the data-limited categories II or IV.  The “phase 
diagram” shown in Figure 2 helps explain why.  It indicates that the 
three “end-members” of rock mass behavior are:
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Figure 2. “Phase Diagram” for rock mass failure mechanisms 
in mining.

•  Massive, strong rock that behaves elastically and is subject to 
brittle failure

•  Blocky rock, where deformation and failure occurs 
exclusively along well defined joint systems

•  Soil-like rock, which is subject to shear failure through the 
rock mass

Most real rock masses fall somewhere in the middle of this 
phase diagram.  This is why it has proved so difficult to build 
and use numerical models.  It is not enough that the model 
itself incorporates the many different failure modes, but it must 
have quality input properties and boundary conditions (in situ 
stresses) to match.  Starfield and Cundall concluded that a more 
experimental use of models was appropriate for geomechanics.

In the field of mining ground control, however, many 
problems actually fall into Starfield and Cundall’s region I.  Our 
understanding of the complex mechanical behavior and properties 
or rock masses may be limited, but the potential for data collection 
is huge.  Hundreds of stopes and panels are mined each year, and 
each one is a full-scale test of a mine design.   As Jack Parker noted 
in 1974, “Scattered around the world are millions and millions 
of pillars–the real thing–under all imaginable conditions; and 
tabulating their dimensions, the approximate loads, and whether 
they are stable or not would provide most useful guidelines for 
pillar design.”

Actually, simply tabulating data does not necessarily lead to 
useful conclusions.  Fortunately, today’s data analysis techniques 
are far more powerful than those that were available to the mine 
design pioneers.  In the past 30 years, sciences like economics, 
sociology, psychology, anthropology, and epidemiology have all 
been transformed by quantitative data analysis using statistics.  
Sophisticated statistical packages enable researchers in those 
fields and others to efficiently comb large databases for significant 
relationships between the variables.  Even more recently, the 
business models of some of the most successful corporations in 
the world are based on “mining” the immense quantities of data 
available from internet searches, social networking, cell phone 
usage, and many other sources.

THE HISTORY OF EMPIRICAL DESIGN

For thousands of years, all mine design was empirical, in the 
sense of being based on past experience rather than engineering 
mechanics.  However, the first empirical design method that 
combined case history data with rock mechanics principles appears 
to have been the one published by Bunting in 1911.  Bunting 
addressed the issue of pillar sizing for the anthracite coalfields of 
eastern Pennsylvania.  Improper pillar design had caused numerous 
squeezes, whose “inherent effects” were “the crushing of the 
pillars, the caving of the roof, and the heaving of the bottom.”  
After testing hundreds of coal specimens, Bunting concluded that 
the laboratory strength of anthracite could be represented as:

Ss = 1750 + 750 (w/h)

Where:

Ss is the specimen strength (in psi),

w is the specimen width, and

h the specimen height.

Critically, however, Bunting also had full-scale data in the form 
of data from actual squeezes.  He concluded that the laboratory 
specimens were approximately 2.5 times stronger than full-size 
pillars, such that the pillar strength (Sp) was:

Sp = 700 + 300 (w/h)1

Figure 3 shows Bunting’s data, and his design curve.

Figure 3. Empirical formula for the strength of anthracite pillars 
proposed by Bunting (1911).

Miklos Salamon was responsible for the next significant advance 
in the science of empirical design (Salamon and Munro, 1967).  
Following the infamous Coalbrook pillar collapse in which more 
1  It may be noted that Bunting’s equation can be rewritten as Sp = 1000 (0.7 + 0.3 
(w/h)), which may be compared to the square pillar form of the Mark-Bieniawski 
equation Sp=900 (0.64 + 0.36 (w/h)).  It seems that a century of research has succeeded 
only in expanding the equation’s accuracy by one significant figure!
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than 400 South African coal miners died, Salamon was asked to 
develop guidance to prevent a re-occurrence.  First, he collected a 
case history database of 27 failed and 98 unfailed areas of room 
and pillar workings.  Then he modeled the strength of the pillars 
using a simple power function, using just the pillar’s width and 
height as input.  The model contained three unknown constants, 
which were estimated using the “maximum likelihood” statistical 
technique.  The resulting “Salamon-Munro formula,” or some 
version of it, has been used in the design of nearly every pillar 
mined in South Africa since.

Looking back 20 years later, Salamon (1989) wrote that 
empirical methods were a “very powerful, and to an engineer, 
very satisfying technique to solve strata control problems….
The main advantage of this approach is its firm links to actual 
experience.  Thus, if it is judiciously applied, it can hardly result 
in a totally wrong answer.”  Salamon did however caution that the 
developer of an empirical method must start with “a reasonably 
clear understanding of the physical phenomenon in question.  This 
is a feature which distinguishes it from ordinary regression used 
in statistics.”

The next major breakthrough was the development of modern 
rock mass classification systems in the early 1970’s.  Today 
it is hard to imagine the field of rock engineering without the 
Geomechanics Rock Mass Rating (RMR) and Rock Tunneling 
Quality (Q) systems.  Rock mass classifications have been 
successful because they (Bieniawski, 1988):

• Provide a methodology for characterizing rock mass 
strength using simple measurements;

• Allow geologic information to be converted into 
quantitative engineering data;

• Enable better communication between geologists and 
engineers, and;

• Make it possible to compare ground control experiences 
between sites, even when the geologic conditions are very different.

The last point is a key reason why rock mass classifications 
play such an essential role in empirical design.  By reducing 
the overwhelming variety of geologic variables into a single, 
meaningful, and repeatable parameter, they make it possible to 
quantify geology and include it in statistical analysis.

The original application of both the Q and RMR systems was to 
the selection of support for tunnels (Bieniawski, 1973; Barton et 
al., 1974).  The Q system in particular was associated with a very 
large case history database, which underpinned a very detailed set 
of support recommendations.  Because of their tunneling focus, 
both systems included parameters that went beyond geologic 
rock mass characterization.  The Q system incorporated a factor 
addressing the in situ stress level, while the RMR evaluated the 
orientation of major discontinuities relative to the tunnel drivage.  
Both also included groundwater factors.

The rock mass classification concept was quickly transferred 
to mining. Laubscher (1977; 1990), and Jakubec and Laubscher 
(2000), developed a Modified Rock Mass Rating (MRMR) system 
which starts with the basic RMR value and adjusts it to reflect the 

changes introduced by mining activities.  The four “adjustment 
factors” address weathering, mining induced stresses, joint 
orientation, and the effects of blasting.  Originally, block caving 
mines in southern Africa provided the data for the MRMR and its 
design recommendations, but other case histories from around the 
world have been added since.  A set of support recommendations 
was developed as well.

Kendorski et al (1983) also modified the RMR to produce the 
MBR (modified basic RMR) system, based on case histories 
collected from block caving operations in the USA.  The MBR 
involved adjustments for blast damage, mining induced stresses, 
structural features, distance from the cave front, and the size of 
the caving block.  Support recommendations were presented 
for isolated or development drifts as well as for the final support 
of intersections and drifts.  Unfortunately, Kendorski’s system 
was released just before many block caving mines in the US 
were permanently closed (Atchison, 1984), and so it was never 
widely adopted.

The Stability Graph method was first developed by Mathews et 
al. (1981), and was substantially extended by Potvin (1988) and 
Nickson (1992).  By the mid 1990’s its database included more 
than 350 stope stability case histories from Canadian underground 
mines (Hoek et al., 1995).  A substantial international literature 
about the method is indicative of its worldwide application 
(Potvin, 2014).

The Stability Graph method begins with the Q rating, shorn of 
its groundwater and stress parameters.  The modified Q’ rating 
therefore focusses on the rock mass structure (joint distribution) 
and the joint conditions (joint shear strength).  The Q’ rating is then 
multiplied by “adjustment factors” representing the stress acting on 
the stope relative to the uniaxial compressive strength of the rock, 
and the orientation of the most significant discontinuities relative 
to the stope walls and back.  The resulting “Stability Number” (N’) 
is then plotted against the “Hydraulic Radius,” which is a measure 
of the stope span and shape (Figure 4).  Three zones are shown, 
together with “transition zones” between them:

•  Stopes that are likely to be stable without support
•  Stopes that are likely to be stable with cable bolt support, and
•  Stopes that will likely suffer significant stability and dilution 

problems (“caving”)

When using the Stability Graph method, a different N’ is 
calculated for each stope wall and for the stope back, and then the 
designer can use those values to select both the stope dimensions 
and the cable bolt density.

In early versions of the method, the boundaries between these 
zones were apparently drawn by hand, based on the case history 
data (hence the name “Stability Graph Method.”)   Nickson 
(1992) used discriminant analysis to help define the zones shown 
in Figure 4, and also to develop guidelines for selecting cable bolt 
support density.   Mawdesley et al. (2001) extended the database 
to very large stopes, and used logistic regression to help define the 
stability zones.  Other important contributions to the technique 
have included estimates of the “equivalent linear overbreak/
slough” (ELOS) and stope design in very weak rock masses 
(Pakalnis, 2014).
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Figure 4. Zones defined by the Stability Graph method (after 
Nickson, 1992).

All these mining rock mass classification methods were 
originally developed before the advent of widely accessible 
statistics packages, so the lack of quantitative statistical analysis 
is understandable.   Without the aid of statistics, their creators had 
to rely entirely on their own judgment to develop both the rating 
scales for each of the individual “adjustments,” and the relative 
weights of all of the adjustments within each system.  While 
the solid track record of the MRMR and the Stability Graph 
methods testify to the caliber of those judgments, in retrospect it 
is easy to see how they could have benefitted from more rigorous 
statistical analysis.

Pillar design for hard rock has been the subject of several 
empirical techniques, though none has achieved the widespread 
acceptance of the ones used for stope design.  The pioneering work 
of Hedley and Grant (1972), who applied the Salamon-Munro 
approach to a database of 28 pillar designs from the Elliot Lake 
mining district, is still widely referenced.  Lunder and Pakalnis 
(1997) proposed a “Confinement Formula” based on an analysis 
of seven combined databases with a total of 178 case histories.  
Most recently, Esterhuizen et al. (2011) developed the S-Pillar 
design guidelines for underground limestone mines.  Their method 
is combined a comprehensive survey of 91 pillar layouts in 34 US 
stone mines with numerical analyses of the effects of large angular 
discontinuities, weak bands, and benching on pillar strength.

In coal mining, the first of the modern empirical techniques was 
the Analysis of Longwall Pillar Stability (ALPS) method (Mark, 
1990;  Mark et al., 1994).  The need for ALPS was triggered by 
the rapid growth of longwall mining in the US during the 1980’s, 
together with the Wilberg Mine Disaster which claimed 27 lives in 
1984.  A blocked tailgate entry was one of the causes of the great 
loss of life at Wilberg, and subsequent new regulations required 
that longwall tailgate entries be available for emergency egress at 
all times.

ALPS initially focused on extending existing pillar strength 
formulas with new equations for estimating retreat mining 
abutment loads.  However, while many mines had found by trial 
and error that tailgate conditions could improve significantly 
when pillar sizes were increased, it was also evident that pillar 
design was not the only factor affecting tailgate entry stability.  
European studies from the 1960’s had concluded that “whether or 
not the stress (from an extracted longwall panel) will influence a 
roadway depends more on the rocks which surround the roadway 
itself than on the width of the intervening pillar” (Carr and Wilson, 
1982).   Roadway stability might also be expected to be affected by 
roadway width and roof support.

To evaluate coal mine roof, the existing rock mass classifications 
were tried and found wanting, because:

•  They tended to focus on the properties of joints, when 
horizontal bedding is generally the most significant 
discontinuity affecting coal mine roof.

•  They rate just one rock unit at a time, while coal mine roof 
often consists of several layers that vary in strength.

•  They apply to unsupported rock, while roof bolts are 
universally employed in coal mines, and so the “bolted 
interval” must be treated as a single structure.

The Coal Mine Roof Rating (CMRR) was developed to meet 
these requirements (Molinda and Mark, 1994; Mark and Molinda, 
2005).  It employed the familiar format of Bieniawki’s RMR, 
summing the individual ratings to obtain a final CMRR on a zero 
to 100 scale.  It was also calibrated so that the CMRR/standup 
time relationships are roughly comparable to the ones determined 
for the RMR.  On the other hand, the specific input parameters and 
weightings within the CMRR were largely new and derived from 
the rich vein of experience with coal mine ground control going 
back to the 1970’s (Mark and Molinda, 2005).

The data for the original CMRR was collected from 
underground exposures, primarily roof falls.  The input parameters 
included the strength (UCS) and moisture sensitivity of the intact 
rock, and the shear strength, roughness, spacing, and persistence 
for the bedding and other discontinuities.  After an early false 
start, a core-based CMRR was also developed.  The three inputs it 
requires are the UCS, the RQD or fracture spacing observed in the 
core, and diametral Point Load Test (PLT) values as a measure of 
bedding strength.

The tailgate stability problem could now be attacked using 
the CMRR as the measure of rock quality (Mark et al., 1994).  A 
database of case histories was collected from 44 longwall mines, 
and discriminant analysis was used develop guidelines for the 
ALPS Stability Factor (SF) based on the CMRR and other factors 
(Figure 5).   A similar process was followed by Colwell et al. 
(1999) in Australia, and resulted in the Analysis of Longwall 
Tailgate Serviceability (ALTS).

The Analysis of Roof Bolt Systems (ARBS) was also made 
possible by the CMRR (Mark et al., 2001).  ARBS is based on 
studies of roof fall rates conducted at 37 mines, and uses the 
number of roof falls per 10,000 feet of drivage as the outcome 
variable.  ARBS provides recommendations for the primary support 
pattern, as well as a suggested bolt length.  Statistical analysis 
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Figure 5. The ALPS database and logistic regression analysis 
(Mark et al, 1994).

indicated that in addition to the CMRR, the other significant factors 
were the span and the depth of cover.

Other empirical methods developed for coal mine entry stability 
using large databases of case histories include:

•  Evaluation of where extended cuts (or “cut-and-flit” mining in 
Australia) may be suitable (Mark, 1999)

•  Estimation of support requirements for longwall mining 
through pre-driven rooms (Oyler et al., 1998; Thomas, 2008)

•  Design of extra-wide roadways for longwall set-ups and other 
applications (Thomas, 2010; Colwell and Frith, 2013)

•  Analysis and Design of Rib Support (ADRS) for mains and 
gateroad entries (Colwell and Mark, 2005)

The most significant development in the area of coal pillar 
design has been the development of Analysis of Retreat Mining 
Pillar Stability (ARMPS) program.  Just as ALPS is actually 
misnamed (since it addresses the stability of the longwall tailgate 
entry, not the pillars per se), the applicability of ARMPS also goes 
far beyond retreat mining.  ARMPS was developed to prevent pillar 
squeezes, massive pillar collapses, and coal bursts.  It employs the 
same “abutment angle” loading model as ALPS, extended to three 
dimensions.  It can also model a wide variety of mining geometries, 
including both production pillars and barrier pillars.

The original ARMPS database included 140 room-and-pillar 
mining case histories (Mark and Chase, 1997).  While the method 
explained the data very well up to depths of 650 feet or so, it 
seemed that the calculated SF decreased under deeper cover for 
both successful and unsuccessful cases.  Two subsequent research 
projects added another 500 cases to the database, mainly from deep 
cover mines (Chase et al, 2002; Mark, 2010).  The ARMPS loading 
model now incorporates a pressure arch function, whose form was 
determined through statistical analysis of the case history data.

The Analysis of Multiple Seam Stability (AMSS) method 
required the most sophisticated statistical analysis of any of the 
methods described here (Mark, 2007).  Multiple seam interactions 
are very complicated phenomenon, and many factors can 
potentially be involved.  The AMSS database included 344 case 
histories, each of which was defined by 22 variables.  Logistic 

regression was used to winnow these down to six key parameters, 
which were then combined into a predictive equation.  AMSS 
also can be used to predict both pillar failures (squeezes) and roof 
stability issues.

A HOW-TO GUIDE TO EMPIRICAL DESIGN

Empirical design can seem deceptively simple.  What could be 
easier than collecting case histories, plotting them up, and drawing 
a line separating successes from failures?  In reality, a successful 
empirical method, one that meets a real industry need and reliably 
provides safe and cost-effective design solutions, is the result of a 
complex development process.  The process consists of six specific 
stages, each of which has its own potential rewards and pitfalls:

1. Identification of the problem, and of the end users of the 
final product

2. Development of a conceptual rock mechanics model, and 
identification of the key parameters in that model

3. Identification of measures for each of the key parameters, 
and the development of new measures (such as rating scales) 
where necessary

4. Data sources and data collection
5. Statistical analysis
6. Packaging of the final product

While the developers of the successful empirical methods 
described in the preceding section may not have been consciously 
aware that they were following this process, in retrospect it can 
be seen that they were.  It should also be recognized that the 
stages in the process are not necessarily sequential, and in fact 
require feedback loops as learnings occur.  For example, the 
statistical analysis (Stage 5) may result in a finding that requires a 
modification to the model (Stage 2).

Throughout the process, the developer attempts to balance 
simplicity and accuracy.  A complicated method, or one that 
requires hard-to-obtain input parameters, will be difficult to 
develop and probably difficult to use.  Moreover, since mining case 
history databases are relatively small compared with those used 
in other scientific fields, the number of parameters in the model 
must also be kept small.  On the other hand, a model’s ability to 
simulate a real world system depends upon its incorporating all of 
the important characteristics of the real thing.

One of the great strengths of empirical methods is that they 
can largely side-step the need for accurate rock mass properties 
that bedevils numerical techniques. They can do this because the 
analysis essentially involves comparing case histories to one 
another.  Accuracy is only required in a relative sense, not an 
absolute one.  In other words, it is not necessary to know the true 
strength of the pillars in Case A, it is sufficient to know that they 
are stronger than those in Case B and less strong than those in 
Case C.

Stage 1:  Identification of the Problem

The essential initial step is a clear definition of the problem 
being addressed.  A muddled understanding of the problem 
can cascade through the entire process and result in complete 
confusion.  In particular, it is critical that the failure mode be 
clearly identified.  To give a simple example, if case histories 
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involving floor failure are mixed together with actual pillar failures, 
then it may be impossible to learn anything about either one.

Multiple seam mining provides another illustration of this 
point.  Multiple seam interactions baffled researchers for decades, 
both in the U.S. and internationally.  For example, one group of 
researchers found that “stresses from superincumbent workings 
are not transferred through shale strata for distances of over 110 
ft” (Haycocks et al., 1982), while another group indicated that 
“a [vertical] stress transfer distance of 760 ft has been recorded 
between longwalls” (Haycocks et al., 1992).  Clearly, no amount 
of statistics could resolve such discrepancies.  As it turns out, 
however, multiple seam interactions are caused by four distinct 
types of failure (Mark, 2007):

•  Undermining, where full extraction was previously conducted 
in an overlying seam

•  Overmining, where full extraction was previously conducted 
in an underlying seam

•  Ultraclose, where only first workings are present in the 
previously-mined seam, and

•  Dynamic, when active mining occurs above or beneath open 
entries that are in use.

Each of these mechanisms, and particularly dynamic interactions 
involving full extraction beneath active workings, result in 
interaction distances that are significantly different from the others.  
Once the problem was understood correctly, it was possible to 
single out the first two for solution with AMSS (Mark et al., 2007).  
An empirical method must be clear about which types of failure it 
addresses, and which ones are beyond its scope.

Stage 2:  The Conceptual Rock Mechanics Model

The empirical approach requires that the researcher begin with 
a clear hypothesis, in the form of a simplified model of the real 
world that abstracts and isolates the factors that are deemed to be 
important to the problem at hand.  For example, an entry or stope 
stability model will normally need to include:

•  The rock mass quality
•  The applied stress
•  The orientation of discontinuities relative to the mine opening
•  The size and shape of the opening
•  The characteristics of installed support
•  An outcome variable defining success or failure of the design

A general pillar stability model includes these main elements:

•  The strength of ore or coal
•  The pillar geometry (w/h ratio)
•  Discontinuities within the pillar
•  The roof and floor strengths
•  Pillar loading  (including those due to development, retreat 

mining, multiple seam interactions, etc)
•  An outcome variable defining success or failure of the design

The number of elements included in the model may be 
winnowed down based on the current scientific understanding.  
For example, studies have shown that variations in laboratory 
coal strength normally have minimal effect on the strength of full-
scale coal pillars, and coal pillars are normally so squat in shape 

that discontinuities have minimal effect on strength.  So these two 
factors are usually ignored in coal pillar design, but both were 
included in the S-Pillar method developed for the design of slender 
limestone pillars (Esterhuizen, 2011).

On the other hand, each of these main elements is very complex, 
and may in turn be determined by a number of variables.  The 
stress applied to an opening, for example, is a function of the 
far-field tectonic stress field, the depth of cover, the orientation 
of the mine opening, its size and shape, and the stiffness of the 
rock surrounding it.  Whether all of this can be represented in the 
model by a single parameter, or whether several parameters may 
need to be included in the model, depends upon the problem being 
analyzed and the data that is available.

It might be tempting to simply create a long list of variables 
that might impact the result, and then “let the statistics sort it out.”  
This is unlikely to be a successful strategy, because the number of 
variables quickly becomes too great for the size of the case history 
database.  Therefore prudent simplification is necessary.  Moreover, 
many of the variables interact with one another.  For example, the 
magnitude of an abutment load depends on both the depth of cover 
and the extent of the mined out area.  Those two variables must 
be combined in some fashion for the statistical analysis to have a 
chance discerning the effect of either one.  The modeler must use 
both their knowledge of the science and their engineering judgment 
in making these decisions.

It is essential, however, that no important parameter be left out 
simply because it is difficult to measure.  To provide one example, 
individual stress measurements were not available during the 
development of the Extended Cut database.  Without a parameter 
representing the stress, the statistical significance of the early 
analysis relating entry width and CMRR to stability was very low.  
Once the depth of cover was included in the model, however, the 
statistical significance improved greatly.  Evidently, the depth of 
cover was an adequate surrogate or proxy for horizontal stress.  
Later research confirmed that the horizontal stress in the coalfields 
is strongly correlated with the depth of cover (Mark and Gadde, 
2008).  But the important point is that an imperfect measure is far 
superior to none at all.

Stage 3:  Parameter Development

Parameter development is closely linked to the process of model 
development described above.  A number of options are available 
to the modeler:

•  Direct measurements
•  Rating scales
•  Simple mechanics-based models
•  Numerical models

Parameters that can be measured directly include the depth 
of cover, the UCS, and the opening dimensions.   The developer 
must also decide the most appropriate forms of these parameters.  
For example, as measures of the opening dimensions, ARBS uses 
the sum of the intersection diagonals, while the Stability Graph 
method uses the hydraulic radius.  In fact, at this early stage, it is 
appropriate to employ several different parameters that measure 
the same element in the model.  Later on the statistical analysis can 
determine which one is the best predictor.
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Rating scales make it possible to include critical variables that 
are difficult to measure directly.  Rock mass classifications are the 
best-known examples of rating scales used in empirical techniques.  
In fact, “rock mass classification” and “empirical technique” 
are sometimes considered synonymous, which is definitely not 
the case.  A rock mass classification is best considered as single 
number which summarizes the key geotechnical characteristics of 
the rock mass.  In this writer’s opinion, it is better to keep other 
“adjustment factors” (like stress level) separate from the rock 
mass classification.  For one thing, keeping the adjustment factors 
separate allows the statistical analysis to help determine the relative 
weights of each one in the final design.  In addition, when all 
the factors are combined with the rock mass rating into a single 
number, it is harder for users to understand which parameters are 
the most critical in any particular application.

The development of a good rating scale typically requires a 
significant amount of experience and engineering judgment.  For 
example, Laubscher’s “blast damage adjustment” was not based 
on any explicit measurements or models, but rather on “numerous 
observations in the field” (Laubscher, 1990).

Rating scales must also be simple enough that users will be 
able to understand them and to collect the necessary data.  For 
example, remnant pillars left in old works are the major cause of 
multiple seam interactions, and they come in a wide variety of 
configurations.   A complicated rating scale that tried to separate 
the types of remnants into too many classes might have proved 
unworkable, and might not have improved the reliability of 
the model in any case.  Ultimately, the remnant pillar variable 
developed for AMSS has just two levels:  (1) Gob-solid boundary, 
or (2) Isolated remnant pillar.

Rating scales have also been used to evaluate the density of 
roof support.  For example, in ARBS, the parameter that is used to 
measure the roof bolt density is:

ARBS = (Lb) (Nb) (C) 

(Sb) (We)

Where:  Lb= Length of the bolt (ft)

Nb = Number of bolts per row,

C = Bolt capacity (1000’s of pounds, (or kips)) per bolt

Sb = Spacing between rows of bolts (ft),

We = Entry width (ft)

This parameter has been criticized because its “units,” which 
work out to be “kips per ft,” is not really a measure of support 
capacity.  However, most of the rating scales used in empirical 
models are entirely unitless, and so a parameter like ARBS is 
also best understood as a unitless rating scale.  Again, because the 
statistical analysis really consists of relative comparisons between 
case histories, even a physical measurement like span or UCS is 
just a rating scale in the model.  There will be more to say about 
this during the discussion of statistics.

Another technique for developing a single parameter to 
represent a complex physical phenomenon is to create a simple, 
mechanics-based model, using the available scientific knowledge 
and data as appropriate.  The abutment angle concept used in 
ALPS and its cousins is a good example of this process.  It built 
on previous work by Peng, Wilson, and Choi, and was calibrated 
using actual stress measurements (see Mark, 1990 for details).  
While its estimates of the actual stress that might be measured in 
real pillars may not be highly accurate in all cases, it does capture 
the key elements of the process of abutment load formation and so 
has served its purpose well.  The pillar strength formulas used in 
ALPS and other pillar design methods are also examples of model 
parameters based on simple mechanics-based models.

Numerical models can be used to generate model parameters 
in a similar fashion.  Hoek et al. (1995) show how a simple, two-
dimensional elastic model can be used to obtain the stress term for 
use in the Stability Graph method.  AMSS employs a built-in, two-
dimensional version of LaModel to estimate multiple seam loads 
(Mark et al., 2007).   The S-Pillar method incorporates several 
rating scales that were developed through numerical modeling 
(Esterhuizen et al., 2011).

So far this discussion has addressed the predictor parameters 
that are included in the model.  The single most important 
parameter, however, is the outcome.  It is essential that the 
outcomes be clearly defined, to ensure that every case history 
is properly categorized.  Every success must clearly have been 
successful, and every failure the result of the mechanism(s) being 
modeled.  Miscategorizing even a few successes as failures, or 
vice versa, can entirely confuse the statistical trends in the data.  
A database that unwittingly mixes failure mechanisms may also 
be compromised.

An objective measure of the outcome, one that does not 
rely solely on the subjective opinions of different observers, is 
also highly desirable.  For example, in the ARBS database, the 
outcome variable was the number of MSHA-reportable roof falls 
per 10,000 ft of drivage (Mark et al., 2001).   As discussed in the 
next section, however, it is not always possible to employ such an 
objective measure.

Stage 4:  Data Collection

The case history database is the true heart of any empirical 
method.  Empirical methods use past experience to guide future 
design, and the database is where the past experience resides.

Sufficient case history data is seldom available from the 
literature or other published sources.  It is also unlikely that many 
failures will be available for first-hand observation.  Failures are 
typically rare events that are likely to have occurred in the distant 
past in locations that are no longer accessible.  Therefore reliable 
sources at a number of mines, particularly local experts who know 
the history, are essential.  If those individuals also have a basic 
understanding of ground control, so much the better.

It is the author’s experience that the best data is often obtained 
while looking at mine maps, and going over the mine’s experience 
on a panel-by-panel basis.  A map may show, for example, that 
some pillars were abandoned in a certain panel.   Perhaps this was 
due to local pillar failure, but the pillars might also have been left 
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because of seam dips, low coal heights, low ore grade, excessive 
groundwater, or some other issue unrelated to ground control.

A key pitfall at the data collection stage is to “collect 
information to the model,” rather than attempting to fully document 
the conditions and experience at the mine.  While detailed 
questionnaires are essential to ensure that the necessary minimum 
information is collected, the discussions at the mine should be 
allowed to range much further.  For one thing, the research may 
lead the project in unexpected directions, and the initial parameters 
may be modified or new ones may be added.  It is seldom possible 
to return to the all the sources in order to populate a new parameter 
with data, but that might not be necessary if detailed evaluations 
were done.  The principle should be “Better too much data than not 
enough!”  This principle applies also to core logs, rock mechanics 
test data, and other documentation that might be available.

A second reason to conduct a complete evaluation is that some 
case histories are likely to be statistical outliers.  The information 
collected at the mines may provide clues that can help explain why.  
There may be a unique factor—such as a major geologic feature—
that is not present in the other cases.  Sometimes an outlier is the 
clue that leads to a better understanding of the problem and a more 
refined model.  On the other hand, an outlier may just represent the 
tail of an apparently random probability distribution.

A healthy skepticism regarding local explanations about the 
causes of events is generally in order.  As Stemple (1956) noted 
while he was collecting his multiple seam database:

“Bad roof conditions are present in many cases where there is 
no vertically adjacent mining, and so it is not always possible to 
state definitely that mining in another seam is responsible for the 
conditions observed.  The coal miner is usually anxious to fix the 
cause of any difficulty which arises, and certainly the previous 
mining of a contiguous seam provides a convenient scapegoat.”

In addition, a “success” at one mine might be considered a 
“failure” at another, depending on the past experience and safety 
culture at each.  Therefore it is essential that some more objective 
measures of the outcome be employed.  For example, a “success” 
might be defined as “zero ground control-related delays or 
additional support,” while a failure might mean “the map shows 
that the panel was abandoned prematurely, and sources at the mine 
confirm that the cause was poor ground conditions.”  However, 
even case histories with intermediate or undetermined conditions 
represent experience that should be retained in the database. While 
those cases may be excluded from some statistical analyses, they 
could also be very helpful in others.

While it is rarely possible to access more than a few of the 
historic case history sites, underground investigations should 
still be a part of the data collection process wherever possible.  
Underground observations provide a sample of the ground 
conditions and support performance associated with the mine, and 
they can also provide raw data on roof geology and strength for 
rock mass classification.

Stage 5:  Statistical Analysis

The very words “statistical analysis” seem foreign to many in 
rock engineering.  Engineers are trained to see the world in terms 

of load and deformation, where failure is simply a matter of stress 
exceeding strength.  Statistics are generally given short shrift in 
engineering curriculums, and so the entire language of statistics 
is unfamiliar.

Yet statistics are the tools that science has developed to deal 
with uncertainty and probability.  There are plenty of both in 
mining ground control!  In fact, simply “eyeballing” a line through 
a scatter of data on a graph is a pseudo-statistical analysis that 
provides a sense of the trend of the data and the strength of that 
trend.  The Stability Graph method apparently began life just 
this way.

The key point is that statistical analysis assists engineering 
judgment; it does not substitute for it.  Hard and fast rules about 
when an r-squared is “statistically significant” are appropriate for 
process engineering, but they do not apply here.  Statistics help 
interpret large data sets, but ultimately it is still the engineering 
judgment that counts.

If all rock engineering problems involved just two variables, x-y 
graphs and histograms might be all the statistics that were needed.  
In general, however, there are several variables involved.  One 
solution is to combine several variables into one, thereby turning a 
multivariate problem into a bivariate one.  But combining variables 
pre-supposes the relationships between them, which places a large 
burden on the judgment of the model developer.  Multivariate 
statistical techniques are an alternative.

The most common multivariate technique is multiple regression, 
which takes the form:

Y = B0 + B1x1 + B2x2 + … + Bnxn

Where Y represents the outcome, each x represents an input 
parameter, and each B represents a coefficient (slope) for its 
associated parameter.  The coefficients (B’s) are estimated by 
the regression analysis.  In essence, the coefficients reflect the 
relative importance of each parameter to the outcome.  Parameters 
with low statistical significance can be dropped from the model.  
The software also provides information regarding the statistical 
significance of the overall model, which can be used to compare 
models to one another.

Traditional multiple regression requires that the outcome 
variable be linear and continuous (like “stability factor” or 
“stress”).  When the outcome variable is binary (i.e., there are two 
possible outcomes, as in “success” and “failure”), then logistic 
regression is the most common multivariate statistical technique.  
Logistic regression has much in common with linear regression.  
In both cases, the goal is to predict the outcome as a linear 
combination of the predictive variables.  But in place of solving for 
“Y,” logistic regression essentially solves for the likelihood (“Z”) 
of a particular case having one of the two possible outcomes.

Figure 5 illustrates how logistic regression was used to develop 
the ALPS/CMRR design method.  The logistic equation obtained 
from the statistical analysis was:

Z = 4.1 (ALPS SF) + 0.057 (CMRR) - 6.33
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Where Z=0 means an equal probability of success or failure.  
This equation can be re-arranged to solve for the ALPS SF in terms 
of the CMRR:

ALPS SF = 1.67 – 0.014 CMRR

This equation is shown on Figure 5 as the “Logistic Equation.”  
The more conservative Design Equation that was adopted is 
also shown.

The process of model-building with logistic regression is also 
similar to that with linear regression.  In general, the goal is to 
obtain a parsimonious model that best explains the data with the 
fewest variables.  The statistical analysis is typically an iterative 
process.  Many variations on the basic model can be tested and 
evaluated.  As more refined models are developed with new 
combinations of variables, it is often necessary to test parameters 
that had previously been excluded to ensure that they were 
still non-significant.

Another important issue is that of correlations between variables 
within the database.  In general, when two variables are highly 
correlated with one another, both cannot be used in the model.  In 
the ALPS database, for example, the CMRR was found to be highly 
correlated with two other parameters, the primary support and the 
entry width.   It appeared that where the roof was weak to start 
with, the mines had responded by installing more roof bolts and by 
narrowing their entries.  As a result, of the three parameters, only 
the CMRR was included in the final model.  However, the data was 
used to provide guidelines regarding what primary support and 
entry width should be used based on the site-specific CMRR.

It is also important that any continuous variables used in the 
model have a linear effect on the outcome.  However, this is not a 
serious restriction, because it is possible to “transform” a variable 
so that its effect is linear.  For instance, a 10-point decrease in the 
CMRR from 40 to 30 usually has a much greater effect on stability 
than a 10-point decrease from 80 to 70.  If the effect of the CMRR 
is not linear, then using the log of the CMRR may be a better way 
to capture the effect of the CMRR in the regression, as was done 
during the development of both ARBS and AMSS.  Transforming 
a variable in this manner is actually no different than plotting it on 
log paper.

One disadvantage of logistic regression is that there is no 
universally accepted measure of the overall model goodness-of-
fit like the r-squared used in linear regression.  However, there 
are a number of alternatives, such as the ROC, (or Receiver 
Operating Characteristic).  Moreover, the user can select their 
own “optimal” cut point, where the likelihood of misclassifying a 
failure is considered acceptable.  Finally, diagnostics are available 
that allow identification of outliers or individual case histories 
that have a great deal of influence on the model (Hosmer and 
Lemeshow, 2000).

Stage 6:  Packaging the Final Product

If the first five stages have not been conducted properly, an 
attractive final package will not be able to make up for the lack of 
substance.  On the other hand, a poor final package can ensure that 
an otherwise excellent and valuable empirical method languishes 
in obscurity.

The first, essential attribute of the method has to be that it 
provides reasonable, reliable, and useful guidance for engineering 
design.  Fortunately, this is almost built into a properly constructed 
empirical technique.  One potential pitfall is not making clear the 
limitations to the method.  Empirical techniques are most reliable 
when they are interpolating within the boundaries of their case 
history database.  It should be clear to users when a design problem 
falls outside those bounds.

A related requirement is that the users can understand the 
principles underlying the method, and the research that went it into 
its development.   Again, a key advantage of empirical techniques 
is that they can normally be easily grasped by most mining 
professionals.  However, the burden is on the developer to explain 
the system in clear but simple terms.

Clear procedures for input data collection are also essential.  The 
simpler the input data, the better.  In some cases, it may be useful 
to suggest alternative sources for particular pieces of input data.  
For example, UCS data may be obtained from laboratory tests, 
axial point load tests, ball peen hammer tests, or sonic velocity 
logs.  Rock mass classification data is perhaps the most difficult 
type of input to expect others to collect in a uniform, objective, and 
repeatable manner.   Several of the NIOSH software packages start 
with a low “default” value of the CMRR, which requires the user to 
justify higher values.

Today, a computer program, or at least a spreadsheet, is almost 
required if an empirical technique is to be widely accepted.  Older 
tools, including written equations, graphs, and nomograms, are all 
historical artifacts.  Software has many other advantages that go 
well beyond its ease of use.  It is possible, for instance, for users 
to evaluate numerous “what-if” scenarios in a very short time.  
Such pseudo-parametric analyses should lead to better and more 
optimal designs.  From the developer’s standpoint, a big advantage 
is the ability to incorporate pop-up “warnings” when the use may 
be improper, such as when the input data is outside the range of 
the database.  It is also possible to include extensive help files, 
tutorials, and reference materials.

EMPIRICAL DESIGN, LOCAL CALIBRATION, AND 
“TEST AREAS”

Years ago, empirical methods were understood as being most 
applicable to feasibility studies.  It was assumed that when site-
specific guidelines could be developed from local historical data, 
they would be more reliable than generic guidelines (Mark, 1990).

Decades of experience has led to different conclusions, however.  
In general, it appears that greater weight should be given to the 
generic guidelines rather than to local calibration.  There are at 
least four reasons for this:

1. The generic guidelines were developed from very large 
databases encompassing wide varieties of ground conditions, 
and any particular local conditions are probably covered.

2. As Potvin (2014) noted with regard to the Stability Graph 
method, the generic guidelines “have the clear advantage 
of being intrinsically calibrated through the thousands of 
case studies to which they have been applied during the past 
30 years.”
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3. A local calibration based on a handful of cases might not include 
failures simply because failures are unlikely events.  If the 
underlying likelihood of a failure is one-in-ten, then five local 
successes might give a false sense of security.

4. The generic database was collected in a uniform and consistent 
manner, particularly as regards the definitions of “success” 
and “failure.”  At the Crandall Canyon mine, a faulty local 
calibration of ARMPS contributed to the collapse that resulted 
in nine fatalities in 2007.   Historic case histories at Crandall 
Canyon where conditions were “borderline” at best were judged 
“successes, and used to justify designs with even lower ARMPS 
SF values (MSHA, 2008).

“Test Areas” or “Experimental Panels” are really just variants on 
the “local calibration” theme.  As Galvin (2010) observed, “there 
is a history in the coal mining industry of pillar collapses arising 
from the adoption of mining layouts that were first trialed in a so-
called ‘experimental panel’.”  Galvin was thinking mainly of the 
Coalbrook Mine disaster of 1960, but the collapse of the Retsof 
salt mine in 1994 (Scovazzo, 1997) also comes to mind.  In both 
of these instances, narrow experimental panels consisting of small 
or “yield” pillars were judged to be successful.  Subsequent, much 
wider “full scale” panels collapsed, and both mines were destroyed.  
In retrospect it is clear that the small pillars in the experimental 
panels were shielded from the full tributary area load by “pressure 
arches” that formed in the overlying strata.  When the pressure 
arches broke down above the wider panels, the pillars were 
subjected to much higher loads than they had experienced in the 
experimental panels.

Indeed, the test panel philosophy is out of step with modern 
risk management principles.  Surely the odds of failure need to be 
small, certainly less than one-in-ten, even where the consequences 
of failure are very low.  Yet if the actual odds are only one-in-two, 
a test panel still has a 50-50 chance of resulting in a (misleading) 
positive outcome.  That the result of a first coin flip is heads doesn’t 
guarantee that every succeeding coin flip will also be heads.

THE FUTURE OF EMPIRICAL DESIGN

Today empirical methods are an integral part of mine design 
around the world.  Just last year the First International Conference 
on Mine Design Using Empirical Methods was held in Lima, Peru, 
focused exclusively on hard rock mining.  In coal mining, empirical 
methods are involved in the design of nearly every pillar developed 
in South Africa, the US, and Australia.

But what does the future hold?  Has saturation been reached?  
Will numerical modeling finally make empirical methods obsolete?  
Or will new sources of data open up even greater possibilities?

As this paper has shown, the best-known and widely-used 
empirical techniques have addressed industry-wide issues like 
pillar sizing or stope design.  Most of these are now decades 
old, and while valuable updates, adjustments and modifications 
continue to be developed, it seems unlikely that the established 
techniques will be supplanted by entirely new ones any time 
soon.  They have demonstrated their effectiveness, and have been 
“intrinsically calibrated” through wide use, so there seems little 
incentive to start over.  In addition, failures are much less common 
nowadays, though that need not be a major hurdle because the 
definitions can always be shifted.  Longwall tailgate failures were 

rare in Australia even during the 1990’s, so Colwell et al (1999) 
included borderline tailgates and those requiring standing support 
in their “modified unsatisfactory” category.

Site-specific numerical modeling is also unlikely to replace 
empirical techniques in the immediate future.  While very exciting 
progress has been achieved in the development of software that 
can represent the large range of rock mass behaviors and failure 
modes that occur underground, the proportionally large number 
of necessary input properties is seldom available for mining 
applications.  The underground measurements needed to validate 
the models, including ground deformations, stress changes, and 
support loads, are similarly scarce.  Even during the recent “Super 
Cycle” there was little progress on this front, and it would be 
irrational to expect more in today’s economic environment.

On the other hand, there is reason to believe that an entirely 
new era of empirical methods for mining may be dawning.  We 
are living in the age of Big Data, where the cost of collecting and 
analyzing enormous databases is constantly decreasing.  Mining 
geomechanics is certainly not leading the trend, but it has not been 
entirely left out either.  For example, software is available that 
reads longwall leg pressures and shearer position every 20 to 30 
seconds and creates an independent database of these values in a 
compressed format that allows fast access over networks.  Various 
parameters can then be calculated for each leg during each set-
release cycle or during each shear (see Figure 6).  These data have 
been used to develop indicators that routinely give geotechnical 
engineers real-time warnings of developing conditions, such as 
significant weighting and the formation of roof cavities.  A majority 
of Australian longwalls have already implemented the system 
(Trueman et al., 2011; Hoyer, 2012).

Figure 6. Presentation of data for early warning of longwall roof 
cavities using LVA software (Hoyer, 2011).

Extensometers, particularly two-point “tell-tales,” have now 
been used routinely in many coal mines since the 1990’s.  Some 
mines have developed databases representing thousands of 
measurement locations, creating a valuable opportunity for back 
analysis.  For example, the Springvale Mine in NSW, Australia, 
has related the observed deformation histories to a range of 
geotechnical factors, including the depth, the presence of faulting 
and other geological structures, roof lithology, secondary support 
timing, and the approach of the longwall face (Corbett et al., 2014).  
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The goal is to predict which areas are likely to eventually require 
supplemental support based on the mine’s Trigger Action Response 
Plan (TARP).   There are still challenges involved with the 
installation, monitoring, and interpretation of tell-tales, however.  
Remote monitoring is already available, however (Bigby et al., 
2010), and surely this will only improve as wireless communication 
underground becomes routine.

Obtaining the necessary geologic and geotechnical data for these 
types of empirical databases remains a challenge.  Considerable 
progress has recently been made towards interpreting geophysical 
logs for these purposes (Lawrence et al., 2013; Hatherly et al., 
2013).  Ultimately, it should be possible to employ data collected 
underground production drills for geotechnical characterization 
(Peng et al., 2005), but there appears to have been little progress in 
that direction lately.

Mine-wide seismic monitoring systems are also generating 
enormous amounts of data.  Hudyma and Potvin (2010) report 
that the number of systems installed in deep Australian hard 
rock mines increased from one to thirty between 1995 and 2007.  
These systems can be used to locate seismic sources such as 
faults, dykes, shear zones, or geologic contacts, and to quantify 
the seismic hazard in terms of the largest seismic event that might 
be expected from a source.  In addition, by relating the incoming 
peak particle velocities (ppv) to the actual damage experienced by 
installed support systems, it is possible to estimate the required 
support loads and energy dissipation requirements in dynamic 
environments (Mikula, 2012).

Another source of data is numerical modeling itself.  Today’s 
computing power makes it is possible to run many sophisticated, 
non-linear, three-dimensional models in a reasonable amount of 
time.  Thus large databases of parametric analyses or pseudo case 
histories can be created, and treated as ersatz experimental data 
(as suggested by Starfield and Cundall (1988)!).  These results can 
also be compared to existing empirical formulas (Esterhuizen et al., 
2014).  Numerical models can also be used to re-analyze empirical 
data bases, as has been done using LaModel with the ARMPS 
data base (Zhang et al., 2014).  Alternatively, numerical modeling 
can be used to help develop rating scales that serve as elements 
in empirical models, as was done with S-Pillar (Esterhuizen et 
al., 2011).

In conclusion, the challenge for the future will be to turn these 
new sources of data into practical design tools.  The author hopes 
that the basic principles outlined in this paper will be helpful in 
developing the next generation of empirical methods.
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