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ABSTRACT

In previous research, the laminated overburden model from 
the LaModel program was effectively integrated with Analysis of 
Retreat Mining Pillar Stability (ARMPS) through ARMPS-like 
input to create a laboratory version of the new “ARMPS-LAM” 
program. This program takes the basic ARMPS geometric input 
for defining the mining plan and loading condition, and then 
automatically develops, grids, runs, and analyzes a full LaModel 
analysis of the mining geometry to output the section stability 
factor (SF), all without further user input. The initial ARMPS-
LAM results were encouraging with a case history classification 
accuracy of 55% to 71%; however, a few of the input variables that 
were nominally included in the SF calculation showed independent 
significance in the classification accuracy.

Therefore, in order to further improve the accuracy of the 
ARMPS-LAM program, an investigation of the SFs calculated 
by the new ARMPS-LAM program and the ARMPS program 
is detailed in this paper.  The initial results of a linear correlation 
between the ARMPS-LAM SF and the ARMPS SF showed a strong 
correlation (R2 = 0.88), with the ARMPS-LAM SF averaging about 
8% higher. The difference in SFs between the programs were 
further investigated, and, ultimately, the results indicated that the 
laminated overburden model as implemented in ARMPS-LAM 
distributes relatively more load on the section pillars for depths 
less than about 1,000 ft and less load for depths more than 1,000 
ft. The results of this research highlight the potential for improving 
the ARMPS-LAM program in the future by implementing a more 
accurate loading calculation on the section pillars.

INTRODUCTION

A computer code, ARMPS-LAM, has been developed to 
effectively integrate the laminated overburden model into the 
ARMPS program (Zhang and Heasley, 2013). ARMPS-LAM 
functions as an automated solution for a LaModel analysis of an 
ARMPS-type mine design. Basically, the ARMPS-LAM program 
takes the typical ARMPS geometric input and empirical parameters 
for defining the mining plan and loading condition and then 
automatically conducts a complete LaModel analysis to calculate 
the stability factor of the Active Mining Zone (AMZ) (and barrier 
pillars), all without further user input. The program contains the 

necessary modules for covering all aspects and procedures of a full 
LaModel analysis, from pre-processing to post-processing. From 
the user perspective, only the traditional ARMPS input is required. 
Additionally, similar to ARMPS, the output contains the AMZ SF, 
barrier pillars SF, and other loading and strength data; however, 
these output values are now calculated using the laminated 
overburden model (Zhang and Heasley, 2013).

The ARMPS-LAM program consists of three primary modules: 
pre-processing, numerical solution, and post-processing. The 
pre-processing module includes the necessary subroutines to 
import data, develop, and calibrate the laminated overburden 
model (Heasley, 2008). The numerical solution module solves 
the laminated overburden model, and the post-processing module 
contains the subroutines to automatically extract and calculate the 
SFs and pillar loadings and then output the important data.  The 
initial ARMPS-LAM program has been successfully validated 
(Zhang and Heasley, 2013); however, to further improve its 
classification accuracy of successful and unsuccessful cases in 
the future, the differences in the SFs calculated from the ARMPS 
program and the new ARMPS-LAM program are investigated in 
this paper.

STABILITY FACTOR INVESTIGATION

In previous research, the ARMPS 2010 and ARMPS-LAM 
programs were used to calculate the SFs for the 645 case histories 
in the original NIOSH ARMPS database (Zhang and Heasley, 
2013). The results of the ARMPS analysis is based on the EXCEL 
version of ARMPS 2010, provided by the NIOSH for this research. 
It took only a couple of minutes of processing time to run the entire 
database with the EXCEL version of ARMPS. For the ARMPS-
LAM analysis, the entire database took around 10 hours of 
processing time to run. The average running time for a single case 
history is 52 seconds, and the maximum running time of any case 
history in the database was 7 minutes. The ARMPS-LAM solution 
times depend on the complexity and size of the developed model.  
In this research, the SF criterion of 1.50 was used to separate the 
successful and unsuccessful case histories for both programs, and 
the calculated SFs between the two programs were compared to 
analyze their correlations and differences.
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Stability Factor Correlations

To initially investigate the correlations between the two 
programs, the value of the calculated ARMPS-LAM SF was 
initially plotted versus the ARMPS SF, and a linear correlation 
was performed (see Figure 1).  There was a fairly good correlation 
between their stability factors with an R2 value of 0.8797 for the 
best-fit line (green dash line) and an R2 value of 0.8794 for the best-
fit line forced to go through the origin (blue solid line). This means 
that 88% of the variation of the ARMPS-LAM SF can be explained 
by the variation of the ARMPS SF for the given database. When 
the slope of the line is forced to go through the origin, the slope 
of the trend line (1.0811) indicates that the ARMPS-LAM SF 
averages about 8% higher than the ARMPS SF (blue line and 
equation, see Figure 1).

Figure 1. Relationship between ARMPS-LAM SF and 
ARMPS SF.

This strong correlation is not necessarily surprising.  Both 
programs use the Mark-Bieniawski formula for determining the 
coal pillar strength.  Also, both programs use the same abutment 
angle calculation for determining the magnitude of the abutment 
load.  The big difference between the two programs is that 
ARMPS-LAM uses the laminated overburden model in a numerical 
determination of the relative stiffness of the support pillars (and 
gob) to ultimately determine the abutment (and overburden) 
load distribution, while ARMPS uses a number of empirically 
determined formulas for load distribution.

Although the ARMPS-LAM SF and the ARMPS SF show 
a strong correlation (trend line in Figure 1), some significant 
differences are also evident. Figure 1 indicates that some case 
histories have quite a different SF when comparing both programs. 
In order to further explore any significantly patterns in the 
differences between the ARMPS-LAM SF and the ARMPS SF, 
an SF ratio was created by dividing the ARMPS-LAM SF by the 
ARMPS SF for each case study (see Equation 1).

SF 2010 ARMPS
SF LAM-ARMPSRatio SF 

 � (1)

Based on previous research and experience with the laminated 
overburden model (Esterhuizen, Dolinar, and Ellenberger, 2011; 
Heasley, 2012; Heasley et al., 2010; Sears and Heasley, 2013; 
Tulu, Heasley, and Mark, 2010), the SF ratio was analyzed against 
five potentially significant variables: depth, mining height, panel 
width, panel width-to-depth ratio, and pillar width-to-height ratio, 
looking for any significant trends. (For the pillar width-to height 
ratio (w/h), the average value of the section pillars is used. Because 
the strength of a rectangular pillar is different from that of a square 
pillar (Darling, 2011; Dolinar and Esterhuizen, 2007), the shape 
effect is considered by using a value four times the area (A) divided 
by perimeter (C) where w = 4A/C is a substitute for the pillar w/h 
ratio) (Wagner, 1980).

After reviewing the results from all of the potentially significant 
variables, there appeared to be a slight significant trend with the 
depth (R2 = 0.21). In particular, it appears that the SF ratio decrease 
as the depth increases (see Figure 2). This means that the ARMPS-
LAM SF is generally greater than the ARMPS SF when the depth 
is less than about 1,200 ft (as calculated from the regression 
equation). However, when the depth is greater than 1,200 ft, the 
ARMPS-LAM SF is generally smaller than the ARMPS SF.

Figure 2. Influence of the depth on the stability factor ratio.

Any correlation between the SF ratio and the other potentially 
significant parameters, such as panel width, pillar width-to-height 
ratio, panel width-to-depth ratio, and mining height, was also 
investigated, and the results are presented in Figure 3, 4, 5 and 6, 
respectively. Figure 3 shows that the SF ratio is scattering around 
1.08 at different panel widths with very little correlation (R2 = 
0.008). Figure 4 indicates that the SF ratio slightly decreases with 
increasing pillar width-to-height ratio, but the results are still very 
scattered, and the correlation is poor (R2 = 0.060). In Figure 5, 
the SF ratio is seen to increase with the increase of panel width-
to-depth ratio, but, again, the results are very scattered, and the 
correlation is poor (R2 = 0.050). Finally, Figure 6 shows that the 
SF ratio is varying around 1.08 with different mining height and a 
poor correlation of R2 = 0.049. Therefore, in comparing the ratio of 
the SFs between ARMPS-LAM and ARMPS, the only significant 
variable is the depth.
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Figure 3. Influence of the panel width on the stability factor ratio.

Figure 4. Influence of the pillar width-to-height ratio on the 
stability factor ratio.

Stability Factor Differences

To further analyze the differences between the SFs calculated 
by ARMPS-LAM and ARMPS, the differences in classification 
accuracy were examined.  For both programs, the SF value of 
1.50 was used to separate successful from unsuccessful case 
histories. In the classification accuracy analysis, it was found 
that both programs correctly classified 349 of the case histories 
(270 successes and 79 failures), and both programs incorrectly 
classified 187 of the case histories (172 successes and 15 failures).  
For the remaining 109 case histories, the two different programs 
gave opposite classifications. This means that, in these 109 case 
histories, when ARMPS-LAM classified the case history as a 
success, ARMPS classified it as a failure, or vice-versa. Thus, 
in these 109 cases, only one of the programs gives the correct 
classification.  This small subset of the database was used to further 
explore the differences between the two programs with the intent of 
identifying potential improvements to the ARMPS-LAM program.

Figure 5. Influence of the panel width-to-depth ratio on the 
stability factor ratio.

Figure 6. Influence of the mining height on the stability 
factor ratio.

Table 1 further expands the analysis of the small subset of 109 
case histories that were oppositely classified by ARMPS-LAM 
and ARMPS.  In this subset, ARMPS-LAM correctly classified 47 
of them (43%) compared with ARMPS which correctly classified 
the remaining 62 case histories (57%). Specifically, there are 78 
successful case histories (72% of total) where ARMPS-LAM 
correctly predicted 38 (49%) of them (ARMPS fails), and ARMPS 
correctly predicted the remaining 40 (51%) successes (ARMPS-
LAM fails). In addition, there are 31 failed case histories (28% 
of total) where ARMPS-LAM correctly predicts 9 (29%) of them 
(ARMPS fails), and ARMPS correctly predicts the remaining 22 
(71%) failures (ARMPS-LAM fails).

To further explore the case histories in Table 1, the ARMPS-
LAM SF was plotted versus the depth with the case histories 
divided into successes and failures and then further split into two 
sub-categories: ARMPS-LAM is correct, or ARMPS is correct 
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Table 1. Case histories where the two programs disagree on classification.

Program Prediction 
Result

Case Histories with Opposite Results from Programs
Total Opposite Case Success Case Failure

109 78 31
ARMPS-LAM Correct 47 38 (<1,000 ft) 9 (>1,000 ft)
ARMPS 2010 Correct 62 40 (>1,000 ft) 22 (<1,000 ft)

(see Figure 7).  This figure shows that the difference in prediction 
accuracy between the programs is strongly correlated to the depth 
(H).  This figure indicates that, when the depth is less than around 
1,000 ft, the ARMPS-LAM SF is greater than 1.50 for both 
successes and failures, and the ARMPS-LAM program predicts 
more successfully than ARMPS.  However, when the depth is 
greater than 1,000 ft, the ARMPS-LAM SF is less than 1.50 for 
both successes and failures and is often incorrect. This trend (see 
Figure 7) partially explains why ARMPS-LAM correctly classified 
49% of the successes from the subset of the database (because their 
depth is less than 1,000 ft, and ARMPS-LAM gets SFs larger than 
1.50) and why ARMPS-LAM can only correctly classify 29% of 
the failures (because their depth is greater than 1,000 ft, and 
ARMPS-LAM gets SFs smaller than 1.50).

Figure 7. ARMPS-LAM SF vs. depth using the classification 
disagreement database.

Based on the analysis above, it can be seen that, when compared 
with ARMPS, ARMPS-LAM gets a higher SF for shallower cover 
(depths less than 1,000 ft) and gets a lower SF for deeper cover 
(depths greater than 1,000 ft). To further explore this trend, the 
results from ARMPS-LAM for the entire database were analyzed. 
Figure 8 is the plot of the ARMPS-LAM SF versus the depth 
with the case histories divided into the categories of successes 
and failures. These main categories are further split into two sub-
categories: ARMPS-LAM is correct, or ARMPS-LAM is wrong. 
In this graph, it can be seen that most of the incorrectly classified 
successes occur with low ARMPS-LAM SF at deep cover and that 
most of the incorrectly classified failures occur with high ARMPS-
LAM SF at shallow cover.

The details of the classification accuracy related to depth, as 
shown in Figure 8, are tabulated in Table 2. The trends observed in 
Figure 8 are duplicated in the table where ARMPS-LAM is seen 

Figure 8. ARMPS-LAM SF vs. depth using ARMPS database.

to be good at classifying the shallow (less than 1,000 ft) successes 
(258 out of 372, 69%) and the deep (greater than 1,000 ft) failures 
(47 out of 52, 90%). Of course, the corollary is also true (see Table 
2). ARMPS-LAM incorrectly classifies: 44% of shallow failures 
(32 out of 73) and 66% of deep successes (98 out of 148). It should 
be noted that it is not absolute that ARMPS-LAM has a greater SF 
for shallow mines and smaller SF for deeper mines, but there is a 
definite trend.

The highlighted trend in classification accuracy with ARMPS-
LAM with depth is more than likely caused by the loading 
mechanics of the laminated overburden model, which, apparently, 
distributes less load on the AMZ for shallower cover (depths 
less than 1,000 ft), resulting in a higher stability factor, and more 
load on the AMZ for deeper cover (depth greater than 1,000 ft), 
resulting in a lower stability factor. This observation suggests that 
one of the potential future improvements to ARMPS-LAM (and 
LaModel) is to distribute more load on the AMZ for shallower 
cover and less load for deeper cover. This change would help 
ARMPS-LAM more accurately identify the failures with shallow 
cover and the successes with deep cover (see Figure 7). (However, 
it should be noted that this change could cause LaModel to fail to 
predict some successes with shallow cover and some failures with 
deep cover.)

SUMMARY AND CONCLUSIONS

Pillar stability is critical to safe and economic operations of 
room-and-pillar retreat mines. In previous research, a computer 
code, ARMPS-LAM, was developed to effectively implement the 
laminated overburden model (from LaModel) into the ARMPS 
program. This ARMPS-LAM program automatically develops, 
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Table 2. Classification accuracy of ARMPS-LAM using the SF guideline of 1.5.

Case History Category ARMPS-
LAM SF ARMPS-LAM Prediction

Total H <= 1,000 H > 1,000
Val. Per. Val. Per. Val. Per.

Successes
> 1.5 Correct 308 59% 258 69% 50 34%

<= 1.5 Wrong 212 41% 114 31% 98 66%
Total 520 100% 372 100% 148 100%

Failures
<= 1.5 Correct 88 70% 41 56% 47 90%
> 1.5 Wrong 37 30% 32 44% 5 10%

Total 125 100% 73 100% 52 100%

runs, and analyzes a full LaModel analysis of an ARMPS-type 
mine design. An analysis of the SFs calculated by the new ARMPS-
LAM and the ARMPS programs was performed and discussed in 
this paper. Based on the results of the analysis, it was seen that 
there is a strong correlation between the two stability factors (R2 = 
0.88) and that the ARMPS-LAM SF averages about 8% higher than 
the ARMP SF. In a more detailed analysis of the two SFs, depth 
was found to be a significant variable, with the ARMPS-LAM SF 
generally decreasing with depth in relation to the ARMPS SF.

In an analysis of the classification accuracy of ARMPS-LAM, it 
was seen that ARMPS-LAM generally calculated a higher SF and 
was more successful at shallow cover (depths less than 1,000 ft), 
while it generally calculated a lower SF and was less successful at 
deeper cover (depths greater than 1,000 ft).  This analysis indicates 
that the laminated overburden model (as implemented in LaModel/
ARMPS-LAM) distributes less load for shallow cover and more 
load for deep cover than may be accurate. This observation 
indicates that a potential improvement for the laminated 
overburden model might be to enhance the accuracy of its load 
distribution mechanisms by increasing the AMZ load at shallow 
cover and decreasing the AMZ load at deeper cover.  For instance, 
the new abutment loading algorithm proposed by Tulu and Heasley, 
(2012) could achieve this result.  Also, in the future, more accurate 
coal pillar strength models (for instance strain-softening) could 
potentially improve the accuracy of ARMPS-LAM.
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